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(“FERC” or “Commission’’) Notice of Proposed Rulemaking (“NOPR”) issued on November 17,

2016 in the above-dockets on Electric Storage Participation in Markets Operated by Regional

Transmission Organizations and Independent System Operators.
I. Introduction

The Comments have been prepared by, and reflect the research and recommendations of
(1) Dr. Audun Botterud, who is a Principal Research Scientist in the Laboratory for Information
and Decision Systems at MIT. The main goal of Dr. Botterud’s research is to improve the
understanding of the complex interactions between engineering, economics, and policy in
electricity markets, including by integrating energy storage into a smarter electricity grid. Dr.
Botterud is also a Principal Energy Systems Engineer at Argonne National Laboratory. Some of

the research referred to in this response originates from a research project conducted at Argonne

! These submitted comments exclusively reflect the collective views of Drs. Audun Botterud, Apurba Sakti, and
Francis O’Sullivan who are researchers at the Massachusetts Institute of Technology (MIT). The comments
expressed herein do not necessarily reflect the views of, and therefore should not be attributed to, the University or
any Department thereof, or of Argonne National Laboratory.
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National Laboratory; (2) Dr. Apurba Sakti, who is a Research Scientist at the MIT Energy
Initiative. Dr. Sakti has worked on the design and cost of Li-ion batteries, and is focusing on
different techno-economic aspects of energy storage systems at the grid-level as well as for
applications in the transportation sector; and (3) Dr. Francis O’Sullivan is Director of Research
and Analysis for the MIT Energy Initiative, and a Senior lecturer at the MIT Sloan School of
Management. Dr. O’Sullivan’s work is focused on the evolution of the electric power sector,
particularly on the integration of large-scale solar and wind resources, advanced storage
deployment, and on how digitization is enabling operational optimization and unlocking new
business models. The biographies of Drs. Botterud, Sakti, and O’Sullivan are attached.
IL. Summary

We support the general purpose of the NOPR to remove market barriers for energy
storage and distributed energy resources to allow for full participation in the organized electricity
markets, including for capacity, ancillary services, and energy. We support the recommendation
that participation models be established for these resources to recognize their physical and

operational characteristics.

Creating an equal playing field for all electricity market participants is at the heart of
FERC’s mission. The regulatory framework established by FERC therefore will be of critical
importance for emerging technologies in the power grid like energy storage. For instance, in a
recent study (Sakti et al. 2017) we show that a switch from hourly to 5-min settlements in the
real-time market, as dictated by the recent FERC Order No. 825, will more than double the
potential revenues that can be realized from energy storage arbitrage for a given location and

time period. Adoption of this and other rules that recognize the unique characteristics of storage



technologies will enable for their optimal provision of services and values to the grid and also

provide adequate market price signals necessary for their future deployment.

Our specific comments address the part of the NOPR that relates to energy storage, a
subject in which we have extensive expertise, particularly as it pertains to its integration into
electricity markets and the electric power grid. Our Comments are based, in part, on our recent
paper “Enhanced Representations of Lithium-Ion Batteries in Power Systems Models and their
Effect on the Valuation of Energy Arbitrage Applications” (Sakti et al. (2017)), which is attached
to our Comments. Our Comments also draw upon other research on energy storage and
electricity markets, conducted by ourselves and others.

I11. Comments

A. Elimination of Barriers to Electric Storage Resource Participation in Organized
Wholesale Electric Markets

1. Creating a Participation Model for Electric Storage Resources

26-32: We fully support the Commission’s proposal to require ISO/RTOs to establish a
specific participation model for energy storage. As pointed out in the NOPR, energy storage has
unique characteristics that differ from traditional supply and demand resources in electricity
markets: the prime example being that energy storage is an energy-limited resource that can both
sell and buy electricity from the grid. Hence, participation models developed for other resources
are not likely to appreciate all the physical and operational constraints of electric storage.
Moreover, a number of studies show how energy storage can provide multiple benefits to the
grid, and that the associated value tends to increase as the penetration of renewable energy
resources increases due to the power system’s need for greater flexibility (e.g. Denholm et al.
2010, Koritarov et al. 2014). Given this, establishing a participation model that enables energy

storage to realize the multiple revenue streams that accrue from the set of services it provides to



the grid will establish a fair playing field for energy storage compared to other technologies.
Putting in place such a participation model will support the expansion of grid-level storage
technologies where they provide the most cost-effective solution. At the same time, we agree
with the Commission that it is prudent to allow ISO/RTOs some flexibility in defining their own
participation model and qualification requirements, so long as they comply with the overall goals
of the NOPR. Such an approach will enable the implementation of rules that account for

differences in regional characteristics and existing ISO/RTO market rules.

2. Requirements for the Participation Model for Electric Storage Resources

a. Eligibility to Participate in Organized Wholesale Electric Markets

48: We agree that the participation model should ensure that any participating resource
can provide any capacity, energy, and ancillary service that it is capable of providing in the
organized wholesale electric markets. This is of utmost importance to enable non-discriminatory
access to the wholesale markets and an equal oppotunity for energy storage technologies

compared to other resources.

50: We agree that participation in ancillary services markets should be based on the
resource’s ability to provide such services within the required time frames rather than on the
real-time operating status of the resource. For instance, for conventional generators, the ability to
provide spinning reserves and regulation is directly linked to its real-time operating status (i.e. it
needs to be generating to provide these services). In contrast, most storage technologies can
provide these services regardless of the real-time commitment and dispatch status. It is still
important to recognize individual differences between energy storage technologies. For instance,
electrochemical batteries are usually very flexible in terms of ramp rates and fast switching

between charging and discharging states, but with relatively short energy storage duration. In
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contrast, pumped storage hydro plants may have reduced ability to dispatch across the full
capacity range (particularly in pumping mode) and with some time delays between charging and

discharging modes, but with longer storage duration.

51: We believe that for many energy storage technologies it is not necessary to have a
(non-zero) energy schedule to provide certain ancillary services (pumped storage hydro may be
an exception for reasons mentioned above). Batteries can quickly ramp up (discharge) or down
(charge) from a zero power starting point. Given this two-way flexibility, a zero power output
from a battery can be considered equivalent to a non-zero energy schedule for a conventional
generating resource. The NOPR raises an interesting question about whether pricing of energy
and ancillary services would continue to be internally consistent, in the case where a resource
offers ancillary services without offering energy. We do not see internal inconsistencies under
such a scenario. However, under the assumption that energy and reserves are co-optimized in the
electricity market, the cleared schedule of the energy storage unit in the reserves market may
depend on whether or not it offers energy, as this influences its opportunity cost as seen by the
market clearing optimization algorithm. The structure of the energy storage offer (i.e. one or
multiple products) may therefore also influence the overall market outcome. Still, the resulting
market outcome would reflect resource costs and opportunity costs based on the offers provided
to the energy and ancillary services markets, as long as energy and reserve schedules are co-
optimized in the market clearing. In contrast, if energy and reserves markets are cleared
separately, energy storage and other market participants must estimate opportunity costs
individually and build that into their offers. This is complex problem, especially for an energy-
limited resource like energy storage. We therefore believe that a market design based on co-

optimization will provide better scheduling and pricing outcomes for energy storage.



As an example, in Li et al. (2016) we develop a unit commitment and economic dispatch
model where battery energy storage can provide energy and operating reserves. The model co-
optimizes energy and operating reserves for the system, taking resource offer costs as well as
system opportunity costs into account. Energy storage is allocated to provide energy and/or
operating reserves in different time periods, whatever minimizes the total cost of meeting energy
demand and the system’s operating reserve requirements. The resulting schedules include hours
where the battery is scheduled to provide reserves (spinning reserves or regulation) without

providing an energy schedule.

b. Bidding Parameters for Electric Storage Resources

66-68: We agree that bidding parameters should reflect and account for the physical and
operational characteristics of electric energy storage. In this context, we would emphasize that
for most electrochemical energy storage technologies this may also include adequate
representation of battery power limits, efficiency/losses, and battery degradation. In particular,
we show in Sakti et al. (2017) that power limits in Li-Ion batteries are a function of the state of
charge (SOC) of the battery (as illustrated in figure 1b of the attached paper). Moreover, battery
efficiency and energy losses are a function of both SOC and charge/discharge power as
(illustrated in figure la of the attached paper). We develop a battery model that account for these
relationships and show for an energy arbitrage application that they have substantial impact on
the battery’s dispatch schedule and revenues (i.e. up to 10% change in battery revenues). Hence,
ideally bidding parameters for energy storage providers should enable a dynamic representation
of power limits and efficiency losses as a function of SOC. In related work, we show in
Wankmiiller et al. (2017) that battery degradation is a critical issue for batteries that substantially

impacts the lifetime economic value of the asset used in an energy arbitrage application.



Moreover, we show that reflecting degradation cost in offering strategies to reduce battery
cycling contributes to substantially increase battery lifetime and economic viability. Hence,
bidding parameters should also enable the representation of battery degradation and
corresponding capacity fade, which may also be a function of SOC and power charge/discharge
profiles. Additional bidding parameters (these may be optional) may therefore be required to

fully represent the characteristics of electrochemical storage technologies.

The Commission recommends using SOC as a bidding parameter. It is not clear to us
from the NOPR exactly what this means and how it would be applied. Should energy storage
provide a desired SOC level at the beginning or end of the scheduling period? The Commission
should clarify how SOC would be utilized. In this respect we would provide the observation that
in order to make use of the full flexibility in energy storage resources, a fixed SOC target may
not be a good solution since it limits the dispatch flexibility in real-time operations. We show in
Li et al. (2016) that an SOC range is a better strategy to enable the use of the battery as a flexible

resource to address unexpected system deviations in real-time.

69-70: We agree that the ISO/RTO, in principle, is in the best position to manage energy
storage scheduling and SOC in order to minimize system costs. However, this is a challenging
task, especially considering the increasing uncertainty associated with greater renewable
resource penetration levels. Therefore, a key challenge is the development of unit commitment
and economic dispatch strategies that make optimal use of the flexibility provided by energy
storage. We believe that significant innovation will be needed to develop new scheduling and
dispatch formulations that make optimal use of energy storage in unit commitment, economic
dispatch, and market clearing. Ultimately, ISO/RTO scheduling software is not likely to reflect

all technical and economic characteristics of energy storage technologies of concern for the



energy storage asset owners. We therefore agree that energy storage participants should have the
option to manage SOC themselves, while recognizing that this includes exposure to any

deviation penalties in line with other resources on the grid.

71: Substantial software changes are likely to be needed to introduce the bidding
parameters proposed in the NOPR and discussed above. This may influence the computational
efficiency of the market clearing optimization. There will always be a trade-off between
computational efficiency and accuracy in representing technology constraints. In implementing
improved model representations of energy storage, the benefits need to be weighed against

alternative software improvements to address other needs in the system.

c. Eligibility to Participate as a Wholesale Seller and Wholesale Buyer

81: We support the proposed requirement that electric storage resources can be
dispatched and set the wholesale market clearing price as both a wholesale seller and wholesale
buyer. It is important that the economic preferences of energy storage are reflected in the market
clearing when storage assets operate as load as well as supply resources. This will also enable
efficient use of energy storage’s flexibility in system operation. However, we also agree that
energy storage should have the option to self-schedule, in line with other load resources in the

grid.

83: We agree that simultaneous participation as supply and demand resources is
necessary in order to make full use of the flexibility provided by energy storage in system
operation. The optimal mode of operation for energy storage (supply vs. demand) to minimize
system cost cannot be determined up front. On the issue of the possibility of conflicting dispatch

signals, we offer the suggestion that this could also be avoided by building logical checks into



the market clearing algorithm that prevents energy storage supply offers and demand bids from

the same energy storage resource to be accepted at the same time.

e. Energy Used to Charge Electric Storage Resources

100: We agree that the same price signal should apply to energy storage when it buys and
sells electricity from the wholesale market, and that the LMP represent a just and reasonable rate
in both cases. The LMP reflects the marginal value of electricity at a given location and therefore

provides the correct incentive for the dispatch of energy storage resources.
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V. Conclusion

We support the general purpose of the NOPR to remove market barriers for energy storage to
allow for full participation in the organized electricity markets, including for capacity, ancillary
services, and energy. We respectfully request the Commission to consider these comments in

proceeding with the proposed rulemaking.

Respectfully Submitted,

Audun Botterud

Apurba Sakti

Francis O’Sullivan

February 13, 2017
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Brief Biographies of Drs. Audun Botterud, Apurba Sakti, and Francis O’Sullivan

Audun Botterud

Audun Botterud is a Principal Research Scientist in the Laboratory for Information and
Decision Systems at MIT. The main goal of his research is to improve the understanding of the
complex interactions between engineering, economics, and policy in electricity markets. He is
particularly interested in integration of renewable energy and energy storage into a smarter
electricity grid. Towards this end, he uses analytical methods from operations research and
decision science combined with fundamental principles of electrical power engineering and
energy economics. Dr. Botterud is also a Principal Energy Systems Engineer at Argonne
National Laboratory. He received his MSc in Industrial Engineering and PhD in Electrical Power
Engineering from the Norwegian University of Science and Technology.

Apurba Sakti

Apurba Sakti is a Research Scientist at the MIT Energy Initiative, and was previously a
Postdoctoral Associate in the MIT Department of Chemical Engineering. Prior to MIT, Dr.
Sakti was a graduate research assistant in the Vehicle Electrification Group at Carnegie Mellon
University while completing his Ph.D. in Engineering and Public Policy. For his doctoral
dissertation, Dr. Sakti worked on the design and cost of Li-ion batteries and the associated public
policy implications for personal vehicle electrification. His work has since been mentioned in the
New York Times and is also being used by a start-up to improve battery manufacturing. Dr.
Sakti has experience working with the United Nations Development Programme in Zagreb and
the American Council for an Energy Efficient Economy in Washington, D.C. At MIT, Dr. Sakti
is focusing on different techno-economic aspects of energy storage systems at the grid-level as
well as for applications in the transportation sector.

Francis O’Sullivan

Francis O’Sullivan is Director of Research and Analysis for the MIT Energy Initiative,
and a Senior lecturer at the MIT Sloan School of Management. His work is focused on the
evolution of the electric power sector, particularly on the integration of large-scale solar and
wind resources, advanced storage deployment, and on how digitization is enabling operational
optimization and unlocking new business models. He was a Senior Advisor to the US
Department of Energy’s 2017 Quadrennial Energy Review, and is a member of the National
Academies’ Roundtable on Science and Technology for Sustainability. Dr. O’Sullivan is also a
Senior Associate with the Energy and National Security Program at the Center for Strategic and
International Studies. Frank is an electrical engineer by training, receiving his Ph.D., E.E., and
S.M. degrees from the Massachusetts Institute of Technology, and his B.E. degree from the
National University of Ireland.
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1. Introduction

other grid elements or mechanisms that can respond quickly to the
variable and uncertain output of renewables in order to meet

Widespread grid-level integration of variable renewable energy electricity demand instantaneously, increasing the overall “flexi-
sources, such as solar and wind power, requires a power system bility” of the system. Electrochemical energy storage systems
capable of utilizing these resources efficiently. This in turn requires (EESSs)—such as lithium-ion batteries— can contribute to

* Corresponding author.

increasing the power system's flexibility in addition to providing a
host of other services aimed at guaranteeing the power systems'
security of supply—e.g., system adequacy, voltage control, and
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200% [2] in 2015-the largest annual deployment on record-and is
forecast to grow substantially over the coming years as power
systems reduce their carbon footprint by increasing the capacity of
variable renewable resources. Decision support models for the
power system address a range of issues from short-term operations
to long-term planning of electricity supply, demand, and trans-
mission. It is becoming common to consider the role of EESSs in
these models, particularly in the context of renewable integration.
For instance, from a system operations perspective, EESSs have
been included in unit commitment and economic dispatch analysis
in several recent studies [3—5]. The role of EESSs is also considered
in longer-term generation expansion planning models [6,7]. A more
specific application of EESSs is energy arbitrage, i.e. trading energy
from the EESS in the electricity market to exploit temporal price
differences, and several recent papers focus on this problem
[8—10]. Power systems optimization models typically include a
large number of variables and constraints to represent the physics
and economics of the power grid and its components, and are
usually formulated as mixed integer linear programming (MILP)
problems. The traditional approach used in recent studies assessing
the economic performance of EESSs using power systems models
has been to adopt simple formulations to represent the storage
capability limiting the representation of the nonlinear nature of the
physical behavior of EESSs [6,7,11—14]. Simplistic representations of
EESSs in power systems models typically include fixed roundtrip
efficiencies or fixed rated power regardless of the charge/discharge
levels and state of charge (SOC). Nevertheless, in reality these pa-
rameters are dependent on the EESS's power output/input as well
as the EESS's state of charge. Ignoring these relationships mis-
represents the behavior of the EESS and might lead to suboptimal
modeling results as well as misleading assessments of the eco-
nomic benefits and viability of EESSs.

When looking at the value proposition of EESSs, a prerequisite is
that energy storage must be allowed to competitively participate in
the electricity market, based on efficient price signals for all the
different services it provides. Towards this end, market access and
pricing frequency are two fundamental elements to increase the
efficiency of a grid that is evolving as more renewable and
distributed resources become part of it [15]. Market rules affecting
EESSs are evolving accordingly, with one important example in the
United States being the recent FERC ruling order. No 825 [16]
requiring all market operators to use the same time interval for
pricing and dispatch. In the case of several large electricity markets
in the United States, including the Midcontinent Independent
System Operator (MISO), this will move the financial settlements in
the real-time energy market to 5-min prices instead of the hourly
time resolution used so far. This change in market rules may have
important implications for EESS, since energy arbitrage is the
largest potential application for battery technologies and therefore
represents a major market opportunity for investors in EESS.

In this paper, we develop a novel enhanced mixed integer-linear
program (MILP) representation of the behavior of one type of
EESS—a lithium-ion (NMC) battery pack— that includes all the
inter-relationships between rated output, state-of-charge, and
losses. The general representation can also be applied to other
types of batteries. The proposed EESS formulation can be directly
exported to a range of different power systems models based on
MILP formulations. We test the applicability of the proposed EESS
formulation with an energy arbitrage model that maximizes the
profits from the lithium-ion battery pack that buys and sells energy
from the grid, using price data from the MISO market. In particular,
we assess the impact of using the enhanced representation of
lithium-ion batteries on the optimal battery dispatch solution as
well as the estimated profitability from energy arbitrage. Moreover,
we use the energy arbitrage model with the enhanced ESS

representation to investigate the effect of a price signal that varies
every 5-min compared to one that does so every 60-mins.

2. Methodological approach

A generic framework is proposed to capture the nonlinear
physical phenomena that characterizes the behavior of EESSs and
translates them into mixed integer-linear equations that can be
included in traditional power systems models avoiding the exces-
sive computational burden of introducing nonlinear equations in
the model. The framework is then applied to model lithium-ion
batteries, which were chosen for this exercise given their market
dominance [17]. This framework enables the use of a single model
to represent the primary behavior of many other battery chemis-
tries by the specification of only a minimum of technology-specific
parameters. This parametric model would be broadly applicable in
the context of battery applications in power systems. Nevertheless,
given that it uses one common parametric structure, it would likely
be ill-suited for detailed studies focusing on the physical behavior
of a given particular chemistry.!

The approach taken in this work will improve the current
treatment of EESSs in power systems models where the current
battery representation is taken to the 0™ order risking unphysical
performance behavior. The improvement in accuracy resulting
from a more realistic representation of EESSs is quantified by
comparing the economic results derived from this new represen-
tation with those obtained from a generic (0 order) representa-
tion. For the purpose of this analysis we use a generic energy
arbitrage application, but the proposed EESS model could also be
incorporated into other power systems optimization models—e.g.,
unit commitment or capacity expansion— considering a wider
range of EESS applications—e.g., operating reserves, black-start
capabilities, voltage control. We first introduce the primary phys-
ics driving EESS and then develop detailed energy arbitrage model
that incorporate this enhanced EESS representation.

2.1. Physical behavior of electrochemical energy storage systems
(EESS)

The primary physics driving the behavior of EESS are described
by thermodynamics, charge conduction, charge transfer at an
interface, and mass transport. The system is assumed isothermal for
this treatment. A mathematical model of the physical behavior of
EESSs should therefore be consistent between these physical phe-
nomena, which are discussed in more detail below. The equations
modeling each of these phenomena are presented at the individual
battery cell-level, which can be scaled up to represent values at the
pack-level, comprising of a numerous individual cells for power
system applications.

Thermodynamics— The open-circuit voltage (OCV) of an elec-
trochemical cell is the difference in electrochemical potential be-
tween the negative and positive electrodes. The voltage of each
electrode and thus the cell OCV is a function of the state-of-charge
(SOCQ) of the battery. We define SOC here as the as fraction the
Coulombic capacity of the battery in the charged state. The detailed
physics that controls the OCV vs. SOC function are difficult to

! As each commercialized battery technology has already been subjected to
intense modeling activities, the reader is referred to other works in the electro-
chemistry literature using empirical models focusing on the general energy balance
of a battery system [18], the heat generation rate using the energy balance model
[19], electrochemical-thermal modeling and experimental validation [20], and the
simulation and optimization of lithium-ion battery systems [21] amongst others
that involve detailed calculations for the internal electrochemical processes using
physics-based models [22—-26].



A. Sakti et al. / Journal of Power Sources 342 (2017) 279—291 281

generalize or predict due to the complex and dynamic electro-
chemical phenomena involved. Indeed, first principle modeling
activities, such as density functional theory, can capture the pri-
mary behavior of the OCV vs SOC function, but not the exact curve.
Here we maintain a higher level view to capture the primary
behavior. The Nernst equation, Eq (1), is an elementary expression
of the OCV where the thermodynamic voltage, U, of an electrode is
expressed as a function of the activity, a, of the reactants [27].

Lljzlfer%ln(%) forj=norp (1)
However, few battery electrodes follow the Nernst Equation,
particularly in the most frequently recited form of Eq (1), which
assumes unit activity coefficients (i.e., the activities are replaced
with concentrations). Due to non-ideal interactions or the presence
of multiple phases, most OCV vs SOC functions are not well rep-
resented on a log plot by a slope of RT/nF and often require a
summation of several functional forms to precisely fit the observed
behavior. In practice, engineers often fit an empirical function
through the curve to achieve the highest fidelity in the fit [28—30].
We note that the activity or concentration of the oxidized species
(subscript ox) and reduced species (subscript red) correspond to a
specific SOC for the battery. Hereafter we use SOC as a non-
dimensional form of the concentration of oxidized species in the
positive electrode and reduced species in the negative electrode.
The proposed framework is capable of using any empirical formu-
lation, however, a general form of the OCV vs SOC function for the
battery OCV (U) is shown in Eq. (2) as an example. The battery OCV
is the difference between the OCV vs SOC functions for the positive
and negative electrodes multiplied by the number of series con-
nected cell groups. Here, the slope of the function may be modified
with the parameter &. In one derivation for a single electrode, £ is
shown to be related to attractive or repulsive energetic interactions
between reactants [31]. As Eq. (2) is an approximation of the bat-
tery voltage, § should be considered a fitting parameter. Eq. (2) can
also include additional empirical fitting parameters (e.g. o and ) to
capture the complex thermodynamics that govern the system. For
example, layered oxide positive electrode materials in lithium-ion
batteries have significant changes in the slope of the OCV vs SOC
function. In addition, only a fraction of the total lithium content in
layered lithium metal oxides is utilized. In that case, an effective
SOC factor may be multiplied to the SOC to capture the shape of the
curve at top of charge.
TRVRENE &

Fn m) +£-(SOC) + o (SOC)? + §-(SOC)*

(2)

Charge conduction— Charge conduction commonly occurs in
batteries either by electrons moving through a conductive matrix
or the movement of ions in an electrolyte. In the simplest form, the
potential drop or inefficiencies from passing current may be related
linearly to a resistance. These processes occur instantaneously and
any time dependent behavior is related to parallel processes such as
capacitance or the formation of concentration gradients. We delay
discussion of concentration dependent conductivities to the section
on mass transport. For a battery, a simple representation of both
ionic and electronic voltage drops takes the form of Ohm's law, Eq

(3).

AV = IR, 3)

Here, 4V is the voltage loss resulting from charge conduction of
current, I, through resistance for charge conduction R.. Batteries are
composed of layers, and its energy/power content scale with area

rather than volume. Thus, it may be convenient to represent cur-
rent and resistance terms in an area-specific manner. This is
particularly true if one desires to scale up lab-scale testing to sys-
tem level values. The modification of these equations to area-
specific values is straightforward.

Charge transfer at an interface— Interfacial reactions are a
defining characteristic of electrochemical energy storage and con-
version devices as these reactions are where energy is stored or
released within the electrodes. Non-faradaic reactions— where
current flow is due to charge associated with movement of elec-
trolyte ions, reorientation of solvent dipoles etc.—such as double
layer capacitance, typically occur on time scales less than 1 s. We
neglect these processes to focus on Faradaic reactions—where
current flow is due to charge transferred during electrochemical
reaction—which are of primary importance in batteries in contrast
to capacitors. Charge transfer may take the form of an electron from
a carbon electrode to a redox species in solution or an ion crossing
the interface from an electrolyte into a host. Both of these processes
are commonly described by a non-linear current voltage relation-
ship. This relationship can be derived based on potential-modified
activation energies for a reaction. The most common representa-
tion of this reaction is the Butler-Volmer equation shown in Eq (4)
[32], a representation of the Butler-Volmer equation for the ther-
modynamics in Eq (1) evoking the common assumption of a
transfer coefficient of 0.5. The interfacial current density i; may be
related to an electrode geometric area basis through multiplication
by the specific interfacial area of the electrode. Here, k’ is the
combined rate parameter and Vj is the electrode potential.

ij = anJ( ﬁ——coxcred{eo.SF/RT(vﬁuj) _ efo.SF/RT(vjfuj)} (4)

Eq (4) is often linearized in the limit of facile kinetics. This has
the benefit of removing the exponential terms and is often an
adequate representation of a commercial system where the inter-
face has been engineered to not be the limiting factor (i.e. not the
rate determining step or largest source of overpotential). To capture
the role of interfacial charge transfer at the battery level for both
the negative and positive electrodes, we use Eq (5) as a linear
representation of the summation of negative and positive charge
transfer resistances based on Eq (4). Here, Ry is a fitted parameter.

IR,
/SOC-(1 — S0C)

Interfacial charge transfer occurs in parallel with capacitance at
an electrified interface. The time constant associated with this
resistance is commonly less than 1 s, but can become longer at high
or low SOC as the resistance, R, increases. To maintain simplicity,
we lump all time dependent phenomena under mass transport
phenomena.

Mass transport— Concentration gradients typically form in the
electrolyte or within the active materials during the passage of
current. These gradients change the local concentration of the re-
actants at and/or through-out the electrode. Eq. (1) shows that a
change in concentration will result in a change in OCV and thus cell
voltage. This change in OCV appears to the operator of the battery
as a voltage loss and thus caused by an apparent resistance.
Concurrently, the average SOC of the battery is changing regardless
of concentration gradients due to the finite capacity of the system.
Thus, concentration gradients exaggerate the change in voltage that
will be experienced if the current was interrupted and the system
came to equilibrium at the average SOC in the battery.

A complicating factor is that the creation of concentration gra-
dients is by its nature a time dependent phenomena that also de-
pends on the magnitude of the current that is passed. The longer

AV, = IR, = (5)
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the period of operation and greater magnitude of current in a single
charge or discharge mode, the greater the concentration gradient
that forms. Typically, a pseudo-steady-state condition is achieved
at approximately three times the time constant for the process.
Treatment of dilute solution or concentration solution based flux
and material balance equations generally involves a numerical so-
lution, but analytical solutions exist for a subset of circumstances.
In an effort to obtain the 1st order time dependence, we use a
hyperbolic tangent function that well-represents a time constant in
an electrochemical system.

Using the derivative of Eq (2) for dU/dSOC, the apparent con-
centration resistance, Ry, may be defined by Eq (6) [33]. We treat
this resistance as a time and SOC dependent function founded in
the thermodynamics of the system. Here, dt is the time step in the
simulation and Q is the rated Coulombic capacity of the battery. The
second to last term in curly brackets in Eq (6) is the true thermo-
dynamic change in the OCV of the system for the average SOC
change [33]. The last term in curly brackets in Eq (6) is the influence
of the concentration gradients on the apparent voltage of the bat-
tery. The last term ranges from unity at the limit of short durations
to a fitted value Ry at the limit of long durations. The onset of the
apparent concentration resistance is related to a time constant 7
fitted to experimental observations. The time t is the cumulative
time spent operating the battery in a singular current direction,
either charge or discharge.

dUu ASOC
AVy = IRy IdSOC i

(o))} o

Special cases for Eq (6) arise in the limit of short or long oper-
ation. Eq (7) holds for cases where the battery is operated using
short pulses much less than the time constant, 7. Eq (8) holds for
cases when the time step or cumulative time is much greater than
7, which can be further simplified to Eq. (9).

AVy =IRy = Idggc-ASIOC dgg(? {lVayed }for dtortxr (7)
dU ASOC
AVU_IRU—IdSOC -
du y
= 750¢ IVayeE {1+Ry}fordtort>r (8)
AVy — IRy — 1 dU_ASOC_, U o ©)

dSoC ~ I~ 'dsoc soc

2.1.1. Simplified non-linear EESS representation

The power of the battery, Ppqy, is linked to the internal resistance
and efficiency of the chemistry and battery design, as shown in Eq
(10) [34]. The internal resistance, R, is the summation of the
resistance contributions R, Rk, and Ry in Eqns (3), (5) and (6).

Ppare = U?en(1 — &))esys /R (10)

The generation or consumption of power is always coupled with
losses. The electrochemical losses are represented by voltage effi-
ciency, &), and the system losses by the system efficiency, «5;. The
battery losses can be rewritten explicitly as Eq. (10), where Py is
the total power of the battery, without considering the voltage or
system efficiency.

P
Pioss = Prot (1 — eyesys) = # (1 — eyesys)
EvEsys
:Uz(l —e,,)(] —Evgsys)/R (11)

Equation (10) may be rearranged to give the voltage efficiency as
a function of battery power as in Eq (12). The voltage efficiency,
ratio of battery voltage, V, to the open-circuit voltage, U, may be
linearly related to the battery power if e, is close to unity as in Eq.
(13). The linear approximation should be sufficiently accurate for
ey > 0.85, which is the regime most grid storage batteries will
operate.

1 1 PpaueR
=_ — DAt 12
Ev 2 * 4 (Uzgsys) ( )
PpaeeR
~1_ att 13
&y (Uzé'sys) ( )

2.2. Scaling from cell to power plant

Assuming that a single cell type is used in the EESS, the per-
formance of an individual cell may be scaled to represent the EESS
performance at the level of a MW storage facility. The large-scale
EESS is composed of many battery subunits connected in parallel.
The battery subunits (i.e. packs) are typically composed of series
connected cell groups. The cell groups will have individual cells
connected in parallel. Other parallel-series configurations are
possible, but are beyond the scope of this work and would have
little impact on the calculated outcome. For brevity, we treat the
parallel connected battery subunits at the level of cell groups.
Appropriately summing the resistances in parallel and then series
results in Eq (14). A complication left out of this work is the contact
resistances formed by making the cell connections.

R = NsReeyi /Np (14)

The number of cell groups in series, N, is the ratio of the battery
voltage and the cell voltage. The number of cells in parallel, Ny,
within a cell group is the battery capacity divided by the cell ca-
pacity. Substitution of these formulae into Eq (14) using the rela-
tionship between battery energy and capacity results in Eq (15).

U 0 Qe U° , U°Qe
R= Uo ”Rcell QEI UO cell E ¢ (15)
ce

cell
Substituting Eq (15) in Eq (12) gives the SOC dependent Eq (16).
Approximating battery OCV as the average OCV gives an SOC in-
dependent form of Eq (16) and resulting linear approximation in Eq
(17), following the derivation of Eq (13).

1 1 Ppar [Uor cell Qeell
— — —_ 16
& 2+\/4 esysE U] U2, (16)
1 1 Poarr ReenQceit _ 1 Phatt ReenQcent
==+ _ Thatt Reell cell 17
T2\ 4 eysE Uy esysE UZy a7

Equations (16) and (17) give the voltage efficiency of the battery
as a function of the total energy of the battery and the power used
during operation. The last ratio on the right hand side in Eq (17)
scales the losses to the measured performance of the physical
cell. Using these two equations, Fig. 1a shows how the losses
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Fig. 1. Advanced representation of a 10 MWh li-ion battery pack using the proposed enhanced battery model showing (a) losses as function of power and SOC, (b) corresponding
power limits for both charging and discharging as a function of SOC under the assumption of a 90% lower efficiency limit, and (c) corresponding losses as a function of the charge/

discharge power at three different SOC levels.

depend on SOC and power levels for a 10 MWh battery. Higher
losses are incurred at lower SOC levels, and higher power levels.
Corresponding power limits as a function of the SOC that guaran-
tees the operation of the battery at or above an assumed system
efficiency limit of 90% are shown in Fig. 1b. Following the principle
of microscopic reversibility [35], the same curve is used for both
charging and discharging routines. System losses as a function of
the discharge/charge power at three different states of charge has
been shown in Fig. 1c. Piecewise linearized versions of the curves in
Fig. 1b and c are implemented within the energy arbitrage model,
as discussed in detail in Section 2.2.

2.2.1. Model validation

The parameters used to model the open circuit voltage (Equa-
tion (2)) were estimated using data from Sanyo's 2.05 A h LiNiCoMn
cells discharged at a rate of C/5 (Fig. 2a). Performance data were
obtained from the manufacturer's specification sheet, which were
further verified previously in the laboratory using an Arbin BT2000
test stand [36]. The model was then used to predict the discharge
curves for three other rates as shown in Fig. 2b—d. Delivered en-
ergies, both from the model as well as the manufacturers spec sheet
were computed by calculating the area under the curves using the
trapezoidal rule and the results were seen to be within 2.8% of one
other.

2.3. A power systems energy arbitrage model with an improved
linear representation of EESS

The basic energy arbitrage problem is a widely known problem
by the power systems and energy storage communities and is
therefore a suitable starting point to introduce more advanced
battery representations, like the one proposed in this paper. For
simplicity and clarity of exposition, we assume that the battery
owner is a price taker with perfect ability to forecast prices. We
consider historical real-time energy prices for one node (ALTW.-
FAIR.ST) in the MISO electricity market. The node is selected based
on its high price volatility, which therefore makes it a priori a
suitable location for energy storage investments. We focus the
analysis on the real-time market, since day-ahead prices have much
lower price volatility and present lower arbitrage opportunities. In
sum, the perfect foresight assumption here represents an idealistic
case that is likely to overestimate profit opportunities from energy
arbitrage. On the other hand, we do not consider possible addi-
tional revenue streams, e.g. from provision of ancillary services,
that would contribute to improve the profitability of EESS.

In this section, we first introduce the basic energy arbitrage
model for energy storage with the simplest representation of EESS
with fixed efficiency and power limits. Building on the simple
model we introduce three additional models with more advanced
battery representations, based on the proposed EESS representa-
tion. We also present the details of the linearized EESS
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Fig. 2. Discharge data for a 2.05 A h Sanyo LiNiCoMn spirally wound 18,650 cell from the manufacturer's specification sheet at a discharge rate of C/5 (0.41 A) was used to determine
model parameters (a). The model (Var_R) was then tested for other discharge rates (b—d) and was found to accurately represent the data.

implementation within the arbitrage models and the assumptions
used in the case study.

2.3.1. Arbitrage models

A widely known use of energy storage in the power grid is to
buy/sell electricity from/to the power grid. The idea is that the
storage owner can buy and store electricity when the prices are low
and sell it back to the grid when the prices are high, thereby making
a profit through so-called energy arbitrage. Here we focus on the
arbitrage profit maximization of a battery storage owner, a problem
which is widely studied in the literature [9,37,38]. A basic energy
arbitrage maximization problem, MO, is given by the mathematical
program that uses Eqgs. (18)—(28):

(MO) maxip”(t) [E(t) — E°(0)] (18)
Subject to:

EP(t) = Pe(t)y(1 +1) Vt (19)
ES(t) = Py(t)y/(1+m) Vt (20)
P(t) < PM*w(t) Vvt (21)
Py(t) < PP™(1 - w(t)) vt (22)
C(1) = C° = yPy(1) + 7Pc(1) (23)

C(t) = C(t — 1) — YPy(t) + YPe(t) Vt>2 (24)
CMin < C(t) < CM™X Yt (25)
1-)C <) <1+ (26)
ES(t), EP(t), Pe(t), Py(t),C(t) >0 Vit (27)
w(t)e{0,1} Vvt (28)

The objective function in MO is to maximize arbitrage profits,
i.e,, revenue from sales minus cost of purchases given the real-time
electricity price. Constraints shown in Eqs. (19) and (20) reflect the
efficiency losses for charging and discharging at a given time step;
the time step coefficient, v, takes the value of 1/12 for 5-min res-
olution and 1 for 60-min resolution. Efficiency loss is represented as
a constant with parameter 7. Egs. (21) and (22) ensure that the
battery's charging rate is lower than its limits while also ensuring
that it does not charge and discharge at the same time, where the
binary variable w(t) is set to 1 when it is charging and 0 otherwise.
The binary charge/discharge variable is necessary to avoid charging
and discharging to take place at the same time during negative
prices, which may occur in electricity markets. The battery's energy
level, or SOC, is updated by Egs. (23) and (24). The battery's energy
limits are taken into account in (25). Eq. (26) ensures that battery's
energy level at the end of the optimization horizon is within a
tolerance of its initial condition. Finally, Egs. (27) and (28) impose
the non-negativity on the continuous variables and define the bi-
nary variable for charge/discharge.

In the basic arbitrage maximization model, power limits and
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efficiency losses are constants. Next, building on the basic model,
MO, we develop models that take into account variable power
limits and efficiency losses using the EESS representation derived in
section 2.1. We consider three variations:

M1: charge/discharge power limits as a function of SOC

M2: charge/discharge efficiency losses as a function of power
charged/discharged

M3: charge/discharge power limits as a function of SOC and
charge/discharge efficiency losses as a function of power
charged/discharged and SOC

First, in model M1 we model the maximum charging and dis-
charging limits as functions of the SOC. Note that, in MO, the
maximum charging/discharging rates, P/*™ and P7“* are constants
in Egs. (21) and (22). As discussed in Section 2.1.1, in reality the
relationship between the maximum charging (discharging) rates
and the SOC is non-linear. We use step-wise linear functions, as
illustrated in Fig. 1b, to model the nonlinear battery relationships
described in section 2.1. We formulate M1 as follows:

T
M1) max > p*T(r) [Es(t) - EP(t)]
t=1

Subject to: Egs. (19)—(28)

B(1) = [+ (1)) /12-Cm (29)
B(t) = [C(t— 1)+ C(t)]/[2-CM] V> 2 (30)
J
Y(&.J)sc() = ac(t) Vvt (31)
j=1
J
>yt =B(t) vt (32)
j=1
y(t.j) <b()zc(t,j) Vt.j (33)
y(taj_1) Zb(j_l)ZC(tmi) Vth]Zz (34)
1
D OX(t,i)sq(i) = ag(t) Yt (35)
i=1
1
D Ox(t i) =6(t) vt (36)
i=1
x(t,i) < a(i)zy(t,i) Vt,i 37)
x(t,i—1) > a(i— 1)zy4(t,i) Vt,i>2 (38)
Pc(t) < PM¥.qp(t) YVt (39)
Py(t) < PT®.qy(t) Ve (40)
ac(t), ag(t),B(t) >0 Vt (41)

x(t,i),y(t,j) =0 Vti,j (42)

ZC(tvj)>Zd(t7 1)6{071} v, l.] (43)

In M1, §(t) is the fraction of the battery that is charged in period
t. It is defined as the average fraction in the current period and the
previous period by Eqgs. (29) and (30). We define «,(t) and «4(t) as
the variables representing the fractions of the maximum battery
limits that are usable in period t for charge and discharge respec-
tively. Egs. (31)—(38) set up the piece-wise linear functions for
charging and discharging respectively. The non-linear curve is
partitioned into J pieces for charging and I pieces for discharging.
Egs. (31) and (35) compute the fractions of charging and dis-
charging limits available given the components of SOC level and
linearized slopes of the relationship between SOC and fraction of
power rate available. Egs. (32) and (36) make sure that the SOC
components of the piece-wise linear function sum up to the SOC
level in period t. The pieces of the piece-wise linear functions for
SOC level are defined by parameters b(j) and a(i) for charging and
discharging, respectively. Egs. (33) and (37) ensure that the SOC
components of the piece-wise linear functions are less than or
equal to b(j) for charging and a(i) for discharging if the piece is
active, i.e, z(t,j) is 1 for charging, z4(t,i) is 1 for discharging. We
also make sure that if a later piece is active, the piece before it must
be active by the constraints represented by Egs. (34) and (38). Egs.
(39) and (40) limits the maximum charging/discharging limits
given the fractions ac(t) and ay4(t). Note that if the battery is
charging, (39) dominates (21) and if the battery is discharging (40)
dominates (22). Eqs. (41)—(43) ensure non-negativity and set up
the binary variables.

Next, also building on the basic model MO, we introduce charge/
discharge efficiency losses as a function of charge/discharge level in
model M2.

(M2) max XT: PRI (O [E(6) — EP(1)]
t=1

Subject to: Egs. (21)—(28)

EP(t) = y[Pe(t) + PES(0)] Ve (44)
ES(t) =y [Pa(t) - PP*(0)] Ve (45)
L
D et DsPS(l) = PPS(t) vt (46)
I=1
ve(t, ) = Pe(t) V't (47)
I=1
ve(t, 1) < d(DZos(e, 1) vl (48)
ve(t, 1= 1) > d(l - 1)Z(t, 1) vt 1>2 (49)
L
> g (e, DsS (1) = PPS(e) vt (50)
=1
vg(t,l) = Py(t) V't (51)
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va(t, ) < c(DZ9(t,1) vl (52)
vg(6,1 = 1) > c(l - )29, 1) ve,1>2 (53)
PSS (r) < PP™w(t) Vit (54)
PE*(8) < PP™(1 - w(t)) vt (55)
PO (1), PY(6) =0 vt (56)
ve(t,) >0 Vt,l (57)
vg(t,) >0 vl (58)
295 (t,)e{0,1} vt (59)
95, )e{0,1} vt,l (60)

In M2, constraints represented by Egs. (19) and (20) are replaced
by Eqgs. (44) and (45) to account for the variability of efficiency
losses: instead of using the efficiency loss parameter, 7, the losses
are computed now as a function of charge and discharge levels. The
linear step-wise functions for charge/discharge level and losses in
M2 are set up similarly to the SOC and fraction of power limits
relationship in M1. We assume that the same number of pieces, L,
are selected both for charging and discharging. The computed po-
wer charge loss is added to the charge level in Eq. (44) and power
discharge loss is subtracted from the discharge level in Eq. (45).
Losses cannot be greater than the maximum charging and dis-
charging limits by Eqgs. (54) and (55). Egs. (56)—(60) ensure non-
negativity and set up the binary variables for the piecewise loss
functions.

Finally, in model M3, which is the most advanced battery rep-
resentation, we model charge/discharge efficiency losses as a
function of both charge/discharge level and SOC. To formulate this,
we define a partition on SOC percentage of the battery as follows:

{0=B(1)<B(2)..

We denote the activation function with u = {u(t, k),k =1,...,K}
where K is the number of curves. There exists a non-linear curve for
every SOC level. The activation function is defined as:

.<B(K) =1}

]
”“”‘)*{0 if B(t) & [B(K). Blk + 1)]

Model M3 also considers that power limits are a function of SOC,
using the same implementation as in model M1. Let M be a big
number. Then model M3 is formulated as:

(M3) maxz pPA(t) [ES(t) EP(t )]
t=1
Subject to: Egs. (21)—(45

), (47)—(49), (51)—(60)

=

dutk)=1 Vvt (61)

k=1

K

B(t) <> u(t,k)-Bk+1) vt (62)
k=1
K

B(t) = > u(t,k)-B(k) Vt (63)
k=1

L

Poss(1) < ; (6, DSOS (1L k) + M(1 —u(t,k)) Vit k (64)
PSS (£) > 3 ve(t, sl (L ky — M(1 —u(t, k) Vvt k (65)
PIoss () < ijud(t D)sl9ss (1 k) + M(1 — u(t,k)) Vit k (66)
PIoss () > Zvd(t D)sloss (1, k) — M(1 — u(t,k)) Vi, k (67)
u(t,k)e{0,1} vtk (68)

In M3, we replace constraints represented by Eqs. (46) and (50)
in M2 by Egs. (61)—(68). The added constraints compute the power
losses as a function of charge/discharge levels as well as predefined
K number of SOC levels. Through the constraint represented by Eq.
(61), only one SOC level can be active in a given time period t. Egs.
(62) and (63) make sure that the SOC level in period t, 3(t), is less
than or equal to the active SOC level for which u(t, k) is 1 and
greater than or equal to the previous SOC level. Eqgs. (64)—(67)
ensure that the slopes for the active SOC level are used to
compute the power loss for charging and discharging. Eq. (68)
defines the binary activation function for SOC levels.

2.3.2. Linearized EESS representation in arbitrage model

The implementation of power limits and losses with piecewise
linear representations is illustrated in Fig. 3 for all advanced models
considered in the case study presented in the next section.

Fig. 3a presents the relationship between SOC and power limits,
which are applied in models M1 and M3. The same curve is used for
both charging and discharging. The linearization of the non-linear
curve is achieved through the step-wise linearization, as illus-
trated in the figure. The maximum power limits occur for the
middle SOC range.

Fig. 3b shows the relationship between power and losses, which
is applied in model M2. The same curve is used both for charging
and discharging. As power input/output of the battery increases the
losses are greater. The marginal losses are also increasing with
higher power limits. The curve in Fig. 3b is estimated from the
battery model based on a SOC-level of 50%, as the model M2 does
not consider the impact of SOC on losses. In contrast, Fig. 3c shows
the power and losses relationship for different SOC levels that apply
to model M3. The relationship between losses and SOC are
nonlinear, but linearized through step-wise functions using five
curves for different SOC levels, all with constant power segments.
Losses are greatest when the battery is empty and the lowest when
it is half way full.

2.3.3. Assumptions and parameters
We use real-time prices from the ALTW.FAIR_ST node in the
MISO market for the week of August 19—25 2013 (prices were
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Fig. 4. Hourly and 5min energy prices in the ALTW.FAIR_ST node in the MISO market for periods (a) Aug 19—25 and (b) Aug 19, hour 1-5.

accessed from MISO's website). This node was selected as it exhibits
large price volatility and therefore is a good candidate for energy
arbitrage applications. The selected week represents peak load
conditions with high prices and also high volatility in prices. In our
analysis, we use both 5 min and hourly time resolution of prices
(shown in Fig. 4) given that with the recent FERC ruling MISO will
change from hourly to 5 min prices for financial settlement soon.”
We investigate the possible implications for energy storage profits
of this change in market rules during the one-week period used in
the analysis. The boundary conditions at the end of the period are

2 Note that 5 min prices were already calculated in 2013, but not used for
financial settlements.

established through a wrap-up tolerance, i.e., battery's energy level
at the end of the optimization horizon is within a tolerance of its
initial condition. The basic parameters used in the models are given
in Table 1.

3. Results and discussion

The objective of this work is to test the effects of an enhanced
representation of lithium-ion batteries in an energy arbitrage
model designed to maximize profits under different resolution
price signals. Electricity price data at both 5- and 60-min resolu-
tions were used for this purpose. For the base-case model
MO—fixed power limit and fixed efficiency—, the weekly profits
obtained by the lithium-ion battery system using price data with 5-
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Table 1

Battery parameters that are used in the numerical study.
Parameter Value Unit
n 10 %
c° 5 MWh
Cmax 10 MWh
Cmin 0.1 MWh
pmax 13.37 MW
piax 13.37 MW
A 1 %
¥ 1/12or1 hour

min resolution were $43.9 k, which dropped by 59% to $17.9 k using
price data with 60-min resolution (Fig. 5 and Table 2). As the bat-
tery models were gradually enhanced from MO to M3—and
consequently gradually constrained by the physical limitations of
the battery—, we see a drop in weekly profits from $43.9 k for MO to
$39.6 k for M3—a 10% drop— when price data with a 5-min reso-
lution is used. The M1 model—where only the power limits are
expressed as a function of the SOC— estimated a 5% decrease in
profit, while the M2 model— in which the efficiency is expressed as
a function of the charging and discharging power— produced a 3%
decrease. When price data with a 60-min resolution was used
(Fig. 5b), the estimated profits decreased by 5% with the battery
model enhancements from $17.9 k for MO to $17 k for M3.

Introducing SOC-dependent power limits in the battery model
(M1) did not impact profits in the 60-min. resolution analysis;
while making the efficiency dependent on the power charge/
discharge in model M2 decreased profits by only 1% compared to
the MO case. These profits along with the revenues and costs have
been summarized in Table 2.

The observed decrease in profits when a 60-min price signal is
used vs. a 5-min signal comes as no surprise when the variation in
these price signals is compared (Fig. 4). The more volatile nature of
the 5-min price profile guarantees more opportunities for arbitrage
than the 60-min profile (Fig. 4b). Fig. 6 shows the time-variation of
the SOC, charging and discharging losses, and the charging and
discharging power across the different models for both the 5-min
and the 60-min resolution price data. These values are useful in
order to further understand the calculated profits.

Fig. 6a and b shows that the variation of the SOC of the 10 MWh
lithium-ion battery used in this study during the first five hours of
the modeling timeframe. As expected, the plot showing the varia-
tion with a 5-min resolution price signal (Fig. 6a) shows a larger
variability compared to the 60-min one (Fig. 6b). This is also true for
the losses and the charging and discharging powers (Fig. 6c—h). It is
seen that with increasing model enhancements the SOC operating
window shrinks due to the more realistic variation of the power
limits and the operating losses. The underestimation of losses with
a fixed power-limit and efficiency in the case of model MO
compared to when they are represented more realistically, as in the

(a) Price data at 5-min resolution

70 mm Profit Cost —=—Revenue
35 - - -
< —a
» g 60
& 350
= £
_ 40 o o
g 5% 3% 10%
N 30
©>
20
0
MO M1 M2 M3
More enhanced representation of Li-ion
batteries —
» 70 (b) Price data at 60-min resolution
©
§ 60
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§ =40 MO: 59% M1: 59% M2: 61% M3: 61%
2 30 - —a
a 20 1% 5%
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More enhanced representation of Li-ion
batteries —

Model description: MO: Fixed power limits, fixed efficiency; M1: SOC dependent power limits,
fixed efficiency; M2: Fixed power limits, efficiency as a function of power; M3: SOC dependent
power limits, efficiency as a function of power and SOC.

Fig. 5. Effects of an enhanced representation of lithium-ion batteries in an energy arbitrage model designed to maximize profits with a) price data at 5-min resolution and b) price
data at 60-min resolution. Profits are seen to be lower by up to 61% for price data with 60-min resolution, while the variation across the models (M0-M3) with increasingly
enhanced representation of lithium-ion batteries are less pronounced. For price data at 5-min resolution, a simple representation with fixed power limits and efficiency (MO) results
in a 10% overestimation of profits compared to when the power limit is varied as a function of the SOC and the efficiency is varied as a function of the SOC and the charge and
discharge power (M3). Varying only the power as a function of the SOC (M1) shows a 5% decrease in profits while varying only the efficiency shows a slightly higher decrease in the
estimated profits at 3%. These differences are less pronounced when the price data is at a 60-min resolution with only a 5% drop in profits between M0 and M3.
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Table 2
Summary of revenue, cost and profit numbers from the arbitrage model for the different models with increasingly enhanced representation of lithium-ion batteries.
MO M1 M2 M3
5-min 60-min 5-min 60-min 5-min 60-min 5-min 60-min
Revenue 64,753 27,153 62,872 27,153 62,323 28,484 59,549 26,950
Cost 20,882 9216 21,187 9216 19,895 10,736 19,997 9933
Profit 43,872 17,937 41,685 17,937 42,428 17,748 39,552 17,017
(a) SOC (5 min) (b) SOC (60 min)
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Fig. 6. State of charge (a—b), losses (c—d), charge (e—f) and discharge (g—h) power variation over a period of 5 h. With higher, 5-min resolution price data, the curves are seen to be
noisier as expected. The operating SOC window is seen to be narrower for M3 compared to MO likely as a result of the variable power limits (a—b). Losses are also seen to be higher
and more variable for M2 and M3 compared to MO and M1 (c—d). Charge and discharge at higher power levels also decreases from MO to M3 (e—h).

case of model M3, is clear from Fig. 6¢c and d. Charge and discharge
power levels are also lower for M3 compared to MO. These per-
formance characteristics of the battery, resulting from the battery

model enhancements, lead to a more accurate estimation of the

arbitrage profits.

Enhanced representations, however, come at the cost of higher
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Table 3
Computational effort to solve the different models.
Model Price Signal Time (s)
MO 5 Min 2.6
60 Min 34
M1 5 Min 809.2
60 Min 100
M2 5 Min 46.9
60 Min 48.2
M3 5 Min 268,497.3
60 Min 780,863.8

computational times. The time to solve the models M0-M3 have
been compared in Table 3. The values reported are for one pro-
cessing core calculated by multiplying the number of cores used
and the solution time. Not surprisingly, we see that the base case
model MO has the fastest solution time given the simple repre-
sentation of the lithium-ion batteries in it, averaging about 3 s for
both the 5-min and the 60-min price signals. On the other side of
the spectrum, model M3 takes 74.5 h and 217 h for the 5- and 60-
min price signals, respectively—substantially longer than model
MO. In the case of M1, we see that the 5-min price signal takes
longer to solve, which could simply be resulting from the higher
resolution price data compared to the 60-min signal. In the case of
M3, however, it takes significantly longer to solve with the 60-min
price signal-comprised of twelve data points of the same price at 5-
min intervals. The reason may be that multiple identical price
points several optimal solutions may exist and this does not help
the model converge any faster. Model M2, in which the power
limits remain fixed but the efficiency is varied as a function of the
charge and discharge powers, stands out as the enhancement with
the lowest computational cost with solution times of less than 50 s.

4. Summary and conclusions

We develop novel enhanced representations of the physical
phenomena in of lithium-ion batteries and investigate the effects of
these new representations on the profits obtained by an electro-
chemical energy storage system in an energy arbitrage model. We
also examine the effect of a 5-min price signal vs. a 60-min one on
the battery's profitability. The proposed representations can serve
as a generic framework that captures the physical phenomena
characterizing the behavior of EESSs into a mixed-integer-linear
formulation. This generic formulation can be directly imple-
mented in a range of different power systems models. We test the
applicability of the proposed EESS formulation within an energy
arbitrage model that maximizes the profits from a lithium-ion
battery pack that buys and sells energy from the grid, using price
data from the MISO market.

We find that when the power-limits and efficiency of a battery
are more accurately represented, profits from the arbitrage model
decreased by as much as 10% compared to when these performance
characteristics of the battery are held constant. However, the most
enhanced model, M3, took substantially longer time to produce a
solution compared to the basic model, MO. An intermediate model,
M2, in which only the efficiency was represented more accurately
performed much better in terms of computational time. Results
from this study also show that increasing the time resolution of the
price signal, from 60- to 5-mins, resulted in a 60% increase of profits
from arbitrage maximization.

4.1. Future work

An important feature of the proposed battery model is that it

can be incorporated into any power systems optimization model
formulated as a MILP problem. In future work, we plan to test the
battery model on other applications in the power system, including
system-wide unit commitment, economic dispatch, and genera-
tion/transmission planning. We will also use the proposed battery
model, which is generic in nature, on different battery chemistries
beyond Li-ion batteries.

An important limitation of the analysis is that the battery model
currently does not account for the degradation associated with
lithium-ion batteries, which is likely going to have a substantial
impact on the profitability of the system. The thermal management
of the battery system is expected to impact degradation along with
the system's efficiency. Improved understanding of thermal man-
agement together with degradation and its effect on battery life-
time, profitability, and optimal operational are important directions
for future work.

Nomenclature
Battery model

Chemistry agnostic variables/constants

E Battery energy

Ppatt Battery power

u° Battery OCV at 50% SOC (Nominal battery voltage)

Q Battery nominal capacity, E/U° = Q

Qox Activity of the oxidant

Ared Activity of the reductant

R Gas constant, 8.314 J/mol.K

T Temperature

n number of moles of electrons transferred in the balanced
equation for the reaction occurring in the cell

F Faraday's constant (96,485 C/mole)

Chemistry specific parameters (Fitted)
Empirical first order parameter to modify slope of battery
OCV vs SOC function, V

a Empirical second order parameter to modify slope of
battery OCV vs SOC function, V

i} Empirical third order parameter to modify slope of
battery OCV vs SOC function, V

R¢ Resistance to charge conduction or high frequency
resistance, Ohm

R'x Kinetic resistance scaling factor, Ohm

R’soc Empirical state-of-charge based resistance scaling factor,
Ohm v-!

Ry Thermodynamic resistance scaling factor, Ohm

T Time constant for mass transport, sec

Esys System efficiency not including electrochemical losses

Optimization

Indices

t time periods, t=1,...,T

i pieces of the piece-wise linear function for discharge
limit, i =1,...,1

j pieces of the piece-wise linear function for charge limit,
j =1,. ~]

m pieces of the piece-wise linear function for charge/
discharge loss, m=1,...,.M

k SOC percentage level of efficiency loss curve for charge/

discharge state, k=1, ...,K

Parameters
pRT(t)  real-time (RT) electricity price in period t
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n losses (one-way)

0 initial state of charge

¢cmax Ccmin. maximum and minimum state of charge

pmax maximum charge rate

PR maximum discharge rate

A wrap-up tolerance

v time step coefficient

sq(i) slope of piece i for discharge limit piece-wise linear
function

a(i) size of piece i

sc(j) slope of piece j for charge limit piece-wise linear function

b(j) size of piece j

sg’“ (m) slope of piece m for discharge loss piece-wise linear
function (M2)

sf;’“(m, k)slope of piece m for discharge loss piece-wise linear
function for SOC level k (M3)

c(m) size of piece m
sloss(m)  slope of piece m for charge loss piece-wise linear function
(M2)

sloss(m, k) slope of piece m for charge loss piece-wise linear function
for SOC level k (M3)

d(m) size of piece m

B(k) partition on SOC percentage, k =1, 2, ..., K

Decision variables

E5(t) energy sold to RT market in period t (discharge)

EP(1) energy purchased from RT market in period t (charge)
Pc(t) power charged in period t

Py4(t) power discharged in period t

C(t) state of charge in period t

ac(t) fraction of maximum charge rate that could be used in
period t

oq(t) fraction of discharge rate that could be used in period t

B(t) fraction of battery that is used in period t

x(t, ) fraction of battery used in period t for piece i

y(t.j) fraction of battery used in period t for piece j

z4(t,i) 1 if piece i is active in period t, 0 otherwise

zc(t,j) 1 if piece j is active in period t, 0 otherwise

w(t) 1 if battery is charging in period t, 0 otherwise

Ploss(¢)  charge loss in period t
Pé"ss (t) discharge loss in period t

vq(t,m) discharge amount for piece m in period t

szss (t,m) 1 if piece m is active in period t, 0 otherwise

ve(t,m) charge amount for piece m in period t

7195s(t, m) 1 if piece m is active in period t, 0 otherwise

u(t,k)  activation function for state of charge level k in period t
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